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Fibronectin type III domain–containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic con
trol in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased 
brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer’s disease. Since impaired brain glucose metabolism 
develops in ageing and is prominent in Alzheimer’s disease, here, we examined associations of a single nucleotide polymorphism in the 
FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-β deposition in a cohort of 240 cognitively unimpaired and 
485 cognitively impaired elderly individuals from the Alzheimer’s Disease Neuroimaging Initiative. In cognitively unimpaired elderly 
individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory- 
linked brain regions and increased brain amyloid-β PET load. No differences in cognition or levels of cerebrospinal fluid amyloid- 
β42, phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results 
indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that 
FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer’s disease pathophysiology. 
Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute 
to elucidating genetic modulators of brain metabolism in humans.
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Graphical Abstract

Introduction
Irisin is an exercise-induced myokine that originates from pro
teolytic cleavage of fibronectin type III domain–containing pro
tein 5 (FNDC5), a transmembrane protein expressed in several 
tissues, including the skeletal muscle and brain.1,2 Irisin was 
initially reported to reprogramme adipocyte metabolism and 

control peripheral glucose homeostasis.3,4 FNDC5 single nu
cleotide polymorphisms (SNPs) have been associated with 
obesity and metabolic syndrome in humans.5-7

In the brain, FNDC5/irisin induces the expression of neu
rotrophins and synaptic plasticity-related genes2,8 and med
iates, at least in part, exercise-induced neurogenesis in the 
mouse hippocampus.9 FNDC5/irisin expression is reduced 
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in the prefrontal cortex and cerebrospinal fluid (CSF) of pa
tients diagnosed with major depression10,11 and has also 
been linked to Parkinson’s disease.12,13 We and others 
have shown that FNDC5/irisin is reduced in the 
Alzheimer’s disease (AD) brain and CSF and that replenish
ing its levels rescues pathology and memory in mouse models 
of AD.1,9 We also reported that CSF irisin correlates with 
CSF levels of amyloid-β42 (Aβ42) and brain-derived neuro
trophic factor and cognition in humans.11,14 However, 
whether there are genomic associations between FNDC5 
and AD-related biomarkers remains unknown.

AD has been linked to defective brain hormonal signalling 
and energy metabolism.15-19 Consolidated evidence indi
cates that AD brains develop hypometabolic profiles in hu
mans.18,20-23 However, the underlying causes and risk 
factors for this association remain to be fully determined. 
Investigation of brain glucose metabolism using [18F]fluoro
deoxyglucose positron emission tomography (FDG-PET) is a 
powerful tool to identify and study brain metabolic dysfunc
tion in ageing and age-related diseases.24,25

Here, we hypothesized that polymorphisms in the FNDC5 
gene may affect brain function and AD biomarkers in the eld
erly. We thus analysed data from 240 cognitively unimpaired 
(CU) and 485 cognitively impaired (CI) participants from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort 
to investigate if SNPs within the FNDC5 gene are associated 
with changes in FDG-PET, cognition and AD biomarkers. 
Allele-specific changes associated with the FNDC5 gene 
may shed light on the roles of FNDC5/irisin in brain physi
ology and neurodegeneration.

Materials and methods
Study design and ethics
Data used to prepare this article were obtained from the ADNI 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public–private partnership led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial MRI, PET, other biological markers 
and clinical and neuropsychological assessment can be com
bined to measure the progression of mild cognitive impairment 
and early AD. The ADNI studies obtained appropriate ap
provals from institutional review boards. Access to data was 
preapproved by the ADNI Review Board.

The current study comprised 725 elderly individuals with 
available cross-sectional [18F]FDG-PET and genotyping 
data: 240 CU (n = 82 carriers and 158 non-carriers) and 
485 CI individuals (n = 167 carriers and 318 non-carriers). 
Patients in the CI group were clinically diagnosed with either 
AD-linked dementia (n = 66) or mild cognitive impairment 
(n = 419). For more detailed demographics, see Table 1.

PET imaging
PET acquisitions followed the protocols established by 
ADNI (http://adni.loni.usc.edu/methods). [18F]FDG-PET 

images were preprocessed to produce an effective point 
spread function of full-width at half maximum of 8 mm. 
Subsequently, linear registration and nonlinear normaliza
tion to the MNI152 template were performed with the linear 
and nonlinear transformations derived from the automatic 
PET to MRI transformation and the individual’s anatomical 
MRI coregistration. [18F]FDG-PET standardized uptake va
lue ratio (SUVR) maps were generated using pons as the ref
erence region.26,27 The global average SUVR was obtained 
from ADNI. Additional details on our processing pipeline 
can be found elsewhere28,29 (see also https://adni.loni. 
usc.edu/wp-content/uploads/2010/05/ADNIGO_PET_Tech_ 
Manual_01142011.pdf). Aβ load was estimated using [18F] 
florbetapir, and the SUVR was calculated using the cerebel
lar grey matter as the reference region. The global amyloid 
PET average SUVR was obtained from ADNI, and the cut- 
off for positivity is 1.11 SUVR.

CSF measurements
CSF was collected from donors by lumbar puncture following 
ADNI protocols and analysed by the electrochemilumines
cence immunoassay Elecsys Aβ42, phosphorylated tau at 
threonine 181 (p-Tau181) and total tau (t-Tau) on an auto
mated Elecsys Cobas e601 instrument, as described by 
ADNI (https://adni.loni.usc.edu/methods/documents/). Preci
sion and accuracy of runs were assessed and were within the 
stated limits set by the manufacturer.30,31 The following 
thresholds were applied to determine amyloid or tau positivity: 

Table 1 Cohort demographics and diagnostic 
information

CU CI Overall
240 485 725

Age (years) 75.5 (6.25) 72.9 (7.73) 73.8 (7.37)
Sex (F) 123 (51.3%) 208 (42.9%) 331 (45.7%)
Education (years) 16.4 (2.69) 16.0 (2.74) 16.2 (2.73)
Cognitive status

Alzheimer’s disease 0 (0%) 66 (13.6%) 66 (9.1%)
Mild cognitive 
impairment

0 (0%) 419 (86.4%) 419 (57.8%)

Cognitively unimpaired 240 (100%) 0 (0%) 240 (33.1%)
Florbetapir 

(positivity)
Negative 120 (50.0%) 163 (33.6%) 283 (39.0%)
Positive 65 (27.1%) 233 (48.0%) 298 (41.1%)

Florbetapir (SUVR) 1.11 (0.181) 1.23 (0.231) 1.19 (0.222)
FNDC5 rs1746661(T) 

SNP
Carriers 74 (30.8%) 146 (30.1%) 220 (30.3%)
Non-carriers 166 (69.2%) 339 (69.9%) 505 (69.7%)

ApoE-ϵ4
Carriers 64 (26.7%) 232 (47.8%) 296 (40.8%)
Non-carriers 176 (73.3%) 253 (52.2%) 429 (59.2%)

Age, sex, diagnosis, educational status, florbetapir positivity and SUVR values, FNDC5 
rs1746661(T) SNP frequency and ApoE-ϵ4 status are indicated as mean with SD or 
counts with percentage of total (%). Abbreviations: ApoE-ϵ4 = apolipoprotein E allele 
ϵ4; CI = cognitively impaired; CU = cognitively unimpaired; FNDC5 = fibronectin type 
III domain–containing protein 5; IQR = interquartile range; SNP = single nucleotide 
polymorphism; SD = standard deviation; SUVR = standardized uptake value ratio.

FNDC5 SNP and glucose metabolism in AD                                                                    BRAIN COMMUNICATIONS 2023: Page 3 of 10 | 3

https://adni.loni.usc.edu
http://adni.loni.usc.edu/methods
https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNIGO_PET_Tech_Manual_01142011.pdf
https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNIGO_PET_Tech_Manual_01142011.pdf
https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNIGO_PET_Tech_Manual_01142011.pdf
https://adni.loni.usc.edu/methods/documents/


Aβ42 < 680 pg/ml [defined as amyloid-positive (A+)]32 and 
t-Tau > 266 pg/ml [defined as tau-positive (T+)].33

Genetic analysis
PLINK (v1.9) was used to preprocess genetic data and SNP se
lection. Participants were genotyped with the HumanOmni2.5 
BeadChip array (Illumina, Inc., San Diego, CA, USA). Quality 
control was performed by excluding SNPs with a genotyping 
efficiency of <95%, a minor allele (MA) frequency of <5%, 
or a deviation from the Hardy–Weinberg equilibrium of 
<1 × 10−6. Subjects would be excluded if they had a call rate 
of <95% or if genetic relatedness was detected (PI_HAT >  
0.5). Redundant SNPs in high linkage disequilibrium were re
moved based on pairwise correlation (R2 = 0.8). After the ini
tial processing of the genetic data, SNPs from the FNDC5 gene 
were extracted within a 10 kb window upstream and down
stream of the gene. We followed the STREGA guidelines,34

as noted in the accompanying checklist.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8 
(GraphPad Software Inc., La Jolla, CA, USA). Data were 
checked for normal distribution using the D’Agostino & 
Pearson Omnibus normality test. Statistical significance of dif
ferences between average values of carriers and non-carriers 
was assessed using a two-way ANOVA test, followed by 
Tukey’s posttest, unless otherwise stated in legends. In the 
supplementary figures, where carriers were subdivided be
tween homozygous and heterozygous, a two-tailed one-way 
ANOVA test, followed by Dunnett’s post hoc test, was per
formed. P-values are reported in each graph.

For [18F]FDG-PET imaging analysis, voxel-wise analyses 
were performed using Rminc, where linear models tested 
the association between the FNDC5 SNP carriership and 
[18F]FDG-PET in all participants, adjusting for age, sex 
and diagnosis. In addition, the analysis was repeated within 
CU and CI groups, adjusting for covariates. Adjustment for 
multiple comparisons was done with random field theory,35

and significant t-values are below or equal to −3.1.

Results
SNP screening and population 
characteristics
After the initial screening of the genomic region of human 
chromosome 1 containing the FNDC5 locus (±10 kb), five 
SNPs were extracted (rs11580896, rs6673337, rs12126851, 
kgp10883921 and rs1746661). In this study, we chose to fo
cus on rs1746661(G/T), as it was the only SNP located within 
the FNDC5 locus.

Demographics and total FNDC5 transcript counts are 
presented in Table 1 and Supplementary Table 1. There 
were no significant differences in age, sex, apolipoprotein E 

allele ϵ4 (ApoE-ϵ4) status or frequency of cognitive impair
ment and AD between carrier and non-carrier groups 
(Supplementary Table 1). FNDC5 transcript counts were simi
lar between carrier and non-carrier groups (Supplementary 
Table 1), indicating no alterations in FNDC5 mRNA content 
between groups.

Association between FNDC5 and 
[18F]FDG-PET in humans
We investigated if rs1746661 MA carriers (T) presented al
terations in brain glucose metabolism through regional [18F] 
FDG-PET in the brain. In the overall cohort, we found that 
CU MA carriers presented [18F]FDG-PET hypometabolism 
compared to non-carriers in multiple brain areas (Fig. 1). 
Analyses of significant [18F]FDG-PET voxels in the grey mat
ter across brain regions revealed that impaired glucose metab
olism was more prominently observed in brain areas linked to 
cognition, executive function and spatial processing, includ
ing the superior frontal gyrus and the inferior occipital gyrus 
in the overall cohort after covariate adjustment for sex and age 
(Figs 1 and 2). Notably, additional hypometabolic areas (nu
cleus accumbens, postcentral gyrus and parietal lobe white 
matter tracts) emerged in CU rs1746661 MA carriers com
pared to non-carriers (Figs 1 and 2; Supplementary Fig. 1A), 
suggesting that rs1746661(T) is associated with signs of de
fective brain glucose metabolism in subjects without cognitive 
impairment. A complete list of investigated regions and their 
voxel association with the rs1746661 MA in CU individuals 
is presented in Supplementary Fig. 1. Conversely, only small 
clusters showing subtle differences between genotypes were 
found in CI subjects (Figs 1 and 2).

FNDC5, AD biomarkers and 
cognitive performance
We then investigated whether rs1746661 MA carriers pre
sented alterations in AD biomarkers. As expected, a reduced 
global [18F]FDG-PET signal was observed in CI patients 
when compared to CU patients, but we found no differences 
between genotype groups (Fig. 3A), suggesting that the 
changes in the [18F]FDG-PET signal in CU SNP carriers are 
present in specific brain regions rather than widespread glu
cose hypometabolism. We then investigated PET data to as
sess cerebral Aβ load. We found increased [18F]florbetapir 
PET retention in CI subjects compared to CU individuals, 
indicating higher Aβ deposition (Fig. 3B). Of note, CI 
rs1746661(T) carriers had significantly higher Aβ PET 
SUVR than CI non-carriers (Fig. 3B), indicating an association 
between the SNP and Aβ accumulation. CSF levels of Aβ42, 
t-Tau or p-Tau181 between carriers and non-carriers were un
changed, although differences between CU and CI were sig
nificant (Fig. 3C–E). In addition, the proportion of subjects 
with abnormal CSF Aβ42 (<680 pg/ml; defined as A+)32 or 
t-Tau (>266 pg/ml; defined as T+)33 was similar between car
riers and non-carriers (Supplementary Table 1). Similar find
ings were observed in [18F]florbetapir retention when 
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comparisons were performed between carriers and non- 
carriers in either CU or CI (Supplementary Table 2). When 
MA carriers were stratified by the allele copy number, CSF 
Aβ42 was unchanged (Supplementary Fig. 2A), but homozy
gous individuals exhibited a trend for increased CSF t-Tau 
(Supplementary Fig. 2B) and p-Tau181 (Supplementary Fig. 
2C), though the limited representation of these individuals 
in the studied cohort reduced the statistical power for this ana
lysis. Mini-Mental State Exam scores were lower in the CI 
group but similar between MA carriers and non-carriers in ei
ther group (Fig. 3E).

Discussion
Irisin has been shown to mediate brain benefits of physical 
exercise,1,2,9 to rescue AD-linked phenotypes in mouse 

models1 and to correlate with Aβ42 and cognitive impair
ment in AD.14,36 However, insight into how FNDC5 and ir
isin contribute to brain physiology and disease risk is limited. 
Here, we studied the influence of a SNP found in an intronic 
region of the FNDC5 locus (rs1746661) on AD biomarkers 
and FDG-PET in a cohort of human subjects with or without 
cognitive impairment.

Irisin has been shown to modulate key peripheral3,37 and 
brain1,2,9 pathways linked to metabolism.38,39 Our finding 
that rs1746661(T) carriers exhibit FDG hypometabolism 
in brain regions important for cognition advocates for the 
potential roles of this FNDC5 genomic variant in the control 
of brain metabolism and function.

The functional relevance of rs1746661 to brain metabolism 
needs to be further investigated. While previous reports found 
little evidence of diabetes-linked peripheral metabolic changes 

Figure 1 Carriers of the FNDC5 rs1746661(T) SNP present brain glucose hypometabolism. Figure shows transversal (upper row), 
sagittal (middle row) and coronal (lower row) images showing FDG-PET metabolism in FNDC5 rs1746661(T) carriers compared to non-carriers in 
all participants without adjustments for covariates (left) and with adjustments for covariates (age and sex) (centre left). Similarly, in CU 
participants’ FNDC5 rs1746661(T) carriers had reduced FDG-PET metabolism as compared to non-carriers (adjusting for covariates; centre 
right). CI participants’ FNDC5 rs1746661(T) carriers also had reduced FDG-PET metabolism as compared to non-carriers (adjusting for 
covariates; right) but to a much lesser extent than that observed in CU participants. t-values are shown as a colour scale in each image, and 
significant results have a t-value smaller than or equal to −3.1.
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associated with rs1746661 in humans,5,6 rs1746661(T) has 
been associated with increased blood pressure and imbalanced 
plasma cholesterol and triglyceride levels6,40 in type 2 diabetes 
patients. Since FNDC5 is notably expressed in the brain and in 
peripheral tissues,1,2 additional investigation should aim to es
tablish whether impaired brain metabolism in SNP carriers 
originates from brain or peripheral metabolic alterations.

Accumulating evidence indicates that intronic SNPs play 
key roles in regulating transcription.41-43 Here, the carriership 
of rs1746661(T) did not result in changes in the total number 
of FNDC5 transcripts (Supplementary Table 1), suggesting 
this SNP may impact other transcriptional characteristics 
(e.g. splicing) rather than transcription efficiency. Notably, 
the rs1746661 SNP is located in a relevant intergenic region 
(between Exons 4 and 5). FNDC5 Exon 4 codes for amino 
acids that are part of the cleaved peptide termed irisin,40 while 
Exon 5 has been shown as an important source of transcript 
variation for FNDC5.44 Future functional genomics studies 
are warranted to determine the significance of rs1746661(T) 
in brain metabolism and AD pathological features.

We focused on potential associations of the rs1746661 
SNP with cognitive function, Aβ or tau pathology, as they 
are hallmarks of AD pathology and disease progression.45

No significant difference in the prevalence of cognitive im
pairment or AD was detected between carriers and non- 
carriers of rs1746661 MA. However, brain Aβ deposition 
was increased in carriers, even when compared with CI non- 
carriers, and a trend towards CSF tau build-up was observed 
in subjects carrying two copies of rs1746661(T), though a 
larger cohort is necessary to confirm this observation.

Our results also show a more prominent regional low glu
cose metabolism in CU subjects, while results from the CI co
hort denote more subtle changes, which may be explained by 
the fact that CI subjects already present a larger, global low 
glucose metabolism in the brain. It is possible that the extent 
of brain hypometabolism found in SNP carriers may contrib
ute to preclinical memory defects at very early phases of dis
ease progression. This possibility could be explored in 
longitudinal studies with SNP carriers in the future. The 
interaction of FNDC5 (rs1746661) with known genetic 

Figure 2 Regional correlation percentage of FDG-PET signals with the rs1746661(T) allele. Figure shows brain regions ranked by the 
percentage of significant voxels in the grey matter, determined through voxel-wise analysis between [18F]FDG-PET and FNDC5 using a t-statistical 
map (threshold of t-value = 2) from the generalized linear regression model.
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Figure 3 Brain amyloid PET, CSF biomarkers and cognition in CU and CI FNDC5 rs1746661(T) carriers and non-carriers. 
FDG-PET SUVR [interaction: F(1,721) = 0.5834; P = 0.4452; cog. status: F(1,721) = 42.19; P < 0.0001; SNP: F(1,721) = 1.842; P = 0.1751] (A); 
florbetapir (amyloid) PET SUVR [interaction: F(1,577) = 3.728; P = 0.0540; cog. status: F(1,577) = 38.80; P < 0.0001; SNP: F(1,577) = 1.157; P =  
0.2825] (B); CSF Aβ42 [interaction: F(1,441) = 0.9008; P = 0.3431; cog. status: F(1,441) = 23.49; P < 0.0001; SNP: F(1,441) = 0.3811; P =  
0.5373] (C); tau [interaction: F(1,552) = 0.03853; P = 0.8445; cog. status: F(1,552) = 13,93; P = 0.0002; SNP: F(1,552) = 0.05279; P = 0.8184] 
(D); p-Tau [interaction: F(1,551) = 0.2329; P = 0.6296; cog. status: F(1,551) = 17.57; P < 0.0001; SNP: F(1,551) = 0.01584; P = 0.8999] (E); and 
Mini-Mental State Exam scores [interaction: F(1,720) = 0.1326; P = 0.7158; cog. status: F(1,720) = 77.58; P < 0.0001; SNP: F(1,720) = 0.1345; P  
= 0.7140] (F) in CU and CI non-carriers and carriers of the FNDC5 rs1746661(T) SNP. Adjusted P-values are depicted above bars, and sample 
size for each group is depicted below bars. Two-way ANOVA with Tukey’s multiple comparison was performed.
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risk factors for sporadic AD, such as ApoE-ϵ4 and triggering 
receptor expressed on myeloid cells 2, to predispose the brain 
to neurodegenerative changes should also be investigated.

Limitations of the current study include the reduced size of 
the group of homozygous FNDC5 SNP rs1746661(T), 
which prevented further stratification in our analysis. 
Moreover, the use of cross-sectional data limits our explora
tory potential to predict disease progression in this cohort, 
and we feel that longitudinal studies of disease progression 
in carriers versus non-carriers are warranted.

We acknowledge that altered blood perfusion may impact 
FDG-PET signals. This issue has not been considered in our 
work because the ADNI study has strict inclusion/exclusion 
criteria in which the subject must not have other neurological 
conditions and no signs of previous cerebrovascular disor
ders, pacemakers, aneurysm clips or artificial heart valves. 
The subjects must also have good general health and show 
no local lesions or infarctions in a baseline MRI scan. 
Therefore, subjects in this cohort are unlikely to present con
ditions that can impact their cerebral blood perfusion.

To the best of our knowledge, this is the first report to as
sociate an FNDC5 SNP with low brain glucose metabolism 
and AD biomarkers. The finding that an FNDC5 SNP is as
sociated with regional low brain glucose metabolism in hu
mans encourages future studies in larger cohorts to 
replicate and extend these observations. Further, it may 
also stimulate investigation of the genomic control and 
physiological roles of FNDC5/irisin in the brain and how 
they may interact with the pathophysiology of AD.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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